
iZiSwap: Building Decentralized Exchange with Discretized
Concentrated Liquidity and Limit Order
Jimmy Yin
iZUMi Finance

Jimmy@izumi.finance

Mac Ren
iZUMi Finance

MacRen000@gmail.com

ABSTRACT
This paper presents iZiSwap, a decentralized exchange protocol
with the backbone of a new-designed discretized concentrated liq-
uidity mechanism as the automated market maker (AMM) and the
efficient support of limit orders. From the liquidity perspective,
iZiSwap unifies the reusable concentrated liquidity from liquidity
providers and the one-off liquidity from limit orders. It is more
friendly to a trader to enjoy both the advantages of minimal price
slippage due to the combined concentrated liquidity and the flex-
ibility of limit order to seize desired transaction opportunity. The
proposed protocol is efficient enough to run in a network situa-
tion similar to Ethereum and some implementation details under
the Ethereum Virtual Machine environment are provided.

KEYWORDS
blockchain, decentralized finance, decentralized exchange, concen-
trated liquidity, order book

1 INTRODUCTION
Decentralized exchanges(DEX) are gradually becomingmainstream.
Backed by the technique of blockchain, DEXs effectively solve the
problem of middleman trust and are more robust to avoid the fail-
ure of a single point. As one of the famous representatives, Uniswap
surpassed 500 billion dollars in cumulative trading volume recently
in October 2021, since it launched in November 2018.

Submitted, November 2021, arXiv version

The rise of DEXs is inseparable from the development of auto-
maticmarketmaker(AMM)mechanism,which essentially describes
a price curve which is dynamic as the reserves change. The re-
serves are provided by liquidity providers and act like the counter-
party for the active traders, which allow digital assets to be traded
in a permissionless and automatic way. Among various AMM de-
signs, the constant product formula 𝑥 · 𝑦 = 𝑘 , as shown in Fig. 1,
adopted by Uniswap V2[1], Pancake, SushiSwap, etc., is the most
famous one, where 𝑥 and 𝑦 are reserves for the two tokens. Dur-
ing the swap procedure, the liquidity 𝑘 is kept unchanged. When
a trader tries to swap Δ𝑥 he will receive Δ𝑦 calculated from (𝑥 +
Δ𝑥)(𝑦 + Δ𝑦) = 𝑘 without considering the transaction fees.

Although clean and neat, the constant formula suffers from the
drawback of low capital utilization efficiency. Many improvements
were proposed from different perspectives then to adapt to differ-
ent application scenarios, such as Curve [3] that keeps price con-
stant in the middle for the stable coin situation. In March 2021,
UniswapV3 proposed concentrated liquidity provisionmechanism,
which allows liquidity providers to place their liquidity in approxi-
mate any price range instead of the whole price space. The concen-
trated liquidity mechanism has significantly improved the capital
utilization efficiency from the liquidity providers’ perspective and
givesminimal price slippage for the traders, bring AMM into a new
era. In just two months, Uniswap V3 occupied about 50% of the
whole market share.

From a trader’s perspective, he can only swap tokens with cur-
rent market price following the Uniswap V3 protocol. Such swap-
ping procedure is similar to the market order mode in the order
book protocol, which is often adopted and is closer to centralized
exchanges. However, a market maker trader can place limit orders

Submitted, November 2021, arXiv version Jimmy Yin and Mac Ren

waiting to be fulfilled with desired prices with the order book pro-
tocol, which is similar to the liquidity providers in AMM except
that the liquidity is one-off. In general, the order book protocol is
computational inefficient under the blockchain environment since
the native implementation needs to loop over the potentially large
order book. DEXs with support of limit orders, such as DyDx, usu-
ally seek blockchain with cheap computing power, such as Layer 2
solutions of Ethereum. The lacking of limit order in AMM such as
Uniswap V3 makes it easy to lose fleeting trading opportunities.

In this paper, we present iZiSwap, a decentralized exchange pro-
tocol with the backbone of concentrated liquidity as AMM and the
efficient support of limit orders with several significant features:
◦ Discrete Concentrated Liquidity: Instead of using constant prod-
uct formula, the liquidity can only be placed on discrete ticks
with different prices, which is more similar to the order book
protocol. In each price tick, the liquidity acts following the con-
stant sum formula. The design allows liquidity providers to con-
centrate their liquidity in their desired price range with a more
clear price/liquidity relationship.

◦ Grouped Limit Order: A trader can place limit orders in certain
price ticks. They are one-off liquidity that the token will not be
swapped back once the price crosses the target. Limit orders on
the same price tick are grouped together to improve efficiency. A
trader needs to claim the swapped tokens if the order is fulfilled.
If only a part of the limit orders on a price tick are fulfilled, the
claim procedure follows “First claim first get” rule.
One of the main challenges is that the whole protocol needs to

be implemented in the environment with limited computation and
storage power, such as in the Ethereum network. The proposed
iZiSwap protocol is efficient enough to run in the network sit-
uation similar to Ethereum and a full implementation under the
Ethereum Virtual Machine environment and can be found in this
Github repo1.

1.1 Outline
Section 2 introduces the concentrated liquidity mechanism in the
pioneeringwork Uniswap V3 and themotivations to ourwork. Sec-
tion 3 introduces the design and key features of the iZiSwap pro-
tocol. In section 4, we provide some important details of the imple-
mentation of the protocol in the Ethereum Virtual Machine(EVM)
environment. Finally, we conclude in section 5.

2 BACKGROUND AND MOTIVATIONS
Without further explanation, we consider one trading pair which
consists of two kinds of tokens 𝑋,𝑌 . We take 𝑋 as the base token
and 𝑌 as the quote one, that is, the term “price” is measure by how
much 𝑌 can we get if we try to swap one unit of 𝑋 . For example,
when 𝑋 is ETH and 𝑌 is USDC, the currently the price 𝑝 means
1 𝐸𝑇𝐻 = 𝑝 𝑈𝑆𝐷𝐶 .

In the context of AMMs, including Uniswap V3, a protocol main-
tains a pool with reserves of token 𝑋 and 𝑌 . Denote the reserves
of 𝑋,𝑌 as 𝑥 and 𝑦 respectively, and (𝑥,𝑦) is able to determine a
unique price 𝑝 . Hence, the protocol describes a price curve as the
reserves change, where the instantaneous price function 𝑝 (𝑥) =

1https://github.com/izumiFinance/izumi-swap-core

−𝑑𝑦/𝑑𝑥 ≥ 0 represents how many 𝑌 tokens can we get with 𝑑𝑥 𝑋
tokens when the reserve of token𝑋 is 𝑥 . Note that there is a minus
sign since the tokens’ amount of change is the opposite.

Alternatively, the protocol can essentially be described by a re-
serve curve as the price 𝑝 changes. Specifically, suppose the price
moves from current price 𝑝𝑐 , with corresponding reserve (𝑥𝑐 , 𝑦𝑐),
to 𝑝𝑏 and 𝑝𝑏 > 𝑝𝑐 , the amount of change satisfiesΔ𝑦 |𝑏𝑐 =

∫ 𝑝𝑏
𝑝𝑐

𝑥 ′(𝑝)𝑝
𝑑𝑝 ≥ 0 and Δ𝑥 |𝑏𝑐 = −

∫ 𝑝𝑐
𝑝𝑎

𝑥 ′(𝑝)𝑑𝑝 ≤ 0, i.e., the reserve (𝑥𝑐 , 𝑦𝑐)
changes to (𝑥𝑐 + Δ𝑥 |𝑏𝑐 , 𝑦𝑐 + Δ𝑦 |𝑏𝑐), where 𝑥 ′(𝑝) is the reserve den-
sity depending on the protocol.

People who place tokens into the reserves are called liquidity
providers, they are the passive counterparty to the traders, who try
to swap one token for the other.

2.1 Concentrated Liquidity in Uniswap V3
Uniswap v3 introduces the concept of concentrated liquidity, where
instead of putting liquidity on the price range of [0,∞), liquid-
ity providers can provide their liquidity in a custom finite range
[𝑝𝑎, 𝑝𝑏]. When the price crosses the boundary of the range, one of
the reserves will be depleted.

(a) The relation between the reserves. (b) The liquidity distribution of price.

Figure 1: Illustration of the Uniswap V3 dynamics from dif-
ferent perspectives.

Thekey point for introducing concentrated liquidity in Uniswap
V3 is to partition the whole price space and manage the liquidity
in each piece separately. Specifically, the whole price space [0,∞)
is partitioned by discrete ticks into bins, following the below defi-
nition.

Definition 2.1 (ticks & bins). When the pool is initialized with a
price 𝑝0, and a base step-size 𝑑 , e.g. 0.0001, the 𝑖-th, tick is a price
value that satisfies:

𝑝𝑖 = 𝑝0 · (1 + 𝑑)𝑖 , 𝑖 ∈ (−∞,∞) .

The 𝑖-th bin 𝑏𝑖 is the price range with two adjacent ticks 𝑝𝑖 and
𝑝𝑖+1 as boundaries:

𝑏𝑖 = [𝑝𝑖 , 𝑝𝑖+1], 𝑖 ∈ (−∞,∞) .

For each bin 𝑏𝑖 , suppose the real reserves of 𝑋,𝑌 are 𝑥𝑖 and 𝑦𝑖
respectively. The relationship between 𝑥𝑖 and 𝑦𝑖 is similar to the
constant product formula except that they are added by “virtual”
reserves 𝐿𝑖/

√
𝑝𝑖+1 and 𝐿𝑖

√
𝑝𝑖 :

(𝑥𝑖 + 𝐿𝑖/
√
𝑝𝑖+1) (𝑦𝑖 + 𝐿𝑖

√
𝑝𝑖) = 𝐿2𝑖 , (1)

iZiSwap: Building Decentralized Exchange with Discretized Concentrated Liquidity and Limit Order Submitted, November 2021, arXiv version

where 𝐿𝑖 is the liquidity , which can be defined alternatively by
𝐿𝑖 = 𝑑𝑦/𝑑

√
𝑃𝑖 and 𝑃𝑖 = −𝑑𝑦𝑖/𝑑𝑥𝑖 . Roughly speaking, the liquid-

ity describes the price slippage rate, the larger liquidity, the lower
price slippage and the better user experience. Notice that 𝐿𝑖 and
𝑃𝑖 are defined locally on 𝑏𝑖 and 𝑃𝑖 can be treated as the price 𝑃
restricted in [𝑝𝑖 , 𝑝𝑖+1]. With 𝐿𝑖 and 𝑃𝑖 in hand, it is convenient to
calculate 𝑥𝑖 and 𝑦𝑖 by solving

𝐿𝑖 =
√
𝑥𝑖𝑦𝑖 , 𝑃𝑖 = 𝑦𝑖/𝑥𝑖 (2)

A nice property for the bins 𝑏𝑖 is that they can be merged some-
times. For a merged bin, i.e., a union of a set of continuous bins
𝑏𝑢 = ∪{𝑏𝑘 , 𝑏𝑘+1, ..., 𝑏𝑘+𝑙 }, with price interval 𝑏𝑢 = [𝑝𝑎, 𝑝𝑏], sup-
pose the liquidity in each bin is the same 𝐿 and the whole reserve
𝑥 =

∑𝑘+𝑙
𝑖=𝑘 𝑥𝑖 , 𝑦

𝑘+𝑙
𝑖=𝑘 =

∑
𝑦𝑖 . The relationship between 𝑥 and 𝑦 is the

merged version of Eq. 1:
(𝑥 + 𝐿/√𝑝𝑏)(𝑦 + 𝐿

√
𝑝𝑎) = 𝐿2 . (3)

In the implementation of the swapping procedure, this property is
useful to fast locate the price 𝑃 and the calculate the reserves 𝑥,𝑦
when the price 𝑃 crosses more than one bins.

As shown in Fig. 1.a, the reserve curve in a certain bin can be
obtained by shifting the 𝑥𝑦 = 𝑘 curve to intercept the axes geo-
metrically. The global reserve curve is the splicing of the curves of
all bins. From the perspective of liquidity distribution in terms of
price, as shown in Fig. 1.b, it is obvious that the liquidity can be ar-
bitrary shape at the granularity of bin. Notice that the liquidity is
constant within a bin as price changes, which means the liquidity
is uniformly distributed in a sense.

2.2 Motivations
TheUniswapV3 protocol is subtly designed. For liquidity providers,
the protocol improves the capital utilization efficiency and for the
traders, they can enjoy a lower price slippage rate.

However, the operating space for the traders is limited. If a trade
wants to swap token 𝑋 for 𝑌 , he can only accept the current price
and operate in real time. This is similar to the market order in the
order book protocol. If he wants to swap 𝑋 for 𝑌 for a desired tar-
get price, i.e., limit order, he needs to wait until the price in the
Uniswap pool reached it and then consumes the liquidity around.
Otherwise, he needs to change his role from a trader to a liquid-
ity provider and place liquidity around the target price. However,
the provided liquidity will not withdraw automatically. When the
price first crosses the target and then goes back and he does not
withdraw the liquidity in time, he will lose the transaction oppor-
tunity.

From the perspective of liquidity, a limit order can be treated
as a one-off liquidity placing on a single target price point, which
can also increase the depth of liquidity. Therefore how to effec-
tively make the two modes compatible in one system, under the
blockchain environment, is a meaningful question.

3 IZISWAP PROTOCOL DESIGN
In this section, we introduce the design and key features for the
iZiSwap protocol. The main goal is to incorporate the limit order
into the concentrated liquidity system. We first introduce the dis-
crete concentrated liquidity and then show how to use it to support
limit order. The key design consideration is to meet user needs

while being able to be implemented with as little time and space
complexity as possible to meet the blockchain conditions such as
Ethereum.

3.1 From Continuous to Discrete
We discuss from the liquidity and price perspective. The whole
price space (0,∞) is again separated by discrete ticks 𝑝𝑖 defined in
Def. 2.1. For a liquidity provider, we limit that the reserve tokens
𝑋 and 𝑌 , provided by liquidity providers and limit orders, can only
be placed on the ticks 𝑝𝑖 , i.e., boundaries on bins 𝑏𝑖 .

Compared to the continuous case in Uniswap V3, in which the
price changes continuously as the reserves change, price in iZiSwap
can only choose discrete values. There are several reasons encour-
aging us to choose the discrete liquidity distribution.
◦ A limit order is essentially discrete, which specifies a target price
instead of a price range. However, if we follow the liquidity de-
fined in Uniswap V3, the liquidity measurement is not prefectly
compatible for the discrete case. Recall that 𝐿 = 𝑑𝑦/𝑑√𝑝 actually
defines a density over the price 𝑝 , and in each bin 𝑏𝑖 , the liquid-
ity is uniformly distributed. If we incorporate the limit order into
the system, we can not directly use 𝐿 to measure the liquidity2.
Although we can define a point mass in the price tick to view the
liquidity in the integral form, the liquidity loses its intuitiveness
and formal unity.

◦ Since the whole price range is already separated into small bins,
the price variation in each bin is almost negligible, e.g. the practi-
cal value for𝑑 in Def. 2.1 is 1.0001. Replacing the continued price
with a single one can avoid the vagueness in a small range. From
the user experience perspective, a trader usually uses the price
as the first information to judge the current market information.
A discrete price tick is stable locally, which helps himmakemore
accurate judgments. Although in practice, using the property
mentioned in Sec.2.1, some bins can be grouped together to a
large range to realize fast locate price and calculate the amount
of swapped token. This can be realized for the discrete case as
well.

Suppose the current price for the 𝑋/𝑌 pair is 𝑝𝑐 , where 𝑐 is a fea-
sible index. For the price tick 𝑝𝑖 < 𝑝𝑐 , there is only token 𝑌 on it,
meaning that the token 𝑌 can be swapped to token 𝑋 at the price
𝑝𝑖 if 𝑝𝑐 reaches it. This is similar to the bid price in the order book
protocol. Symmetrically, for the price tick 𝑝𝑖 > 𝑝𝑐 , there is only
token 𝑋 on it and the token 𝑋 can be swapped to token 𝑌 at that
price, similar to the ask price. When 𝑝𝑖 = 𝑝𝑐 , token 𝑋 and 𝑌 exist
at the same time, which serve as the passive counterparty waiting
for the traders to swap.

The swapping procedure is natural from the trader’s view. In
the most general case, if he wants to swap token 𝑋 to 𝑌 of amount
𝑥 , the protocol will first check if the reserves of 𝑌 on price tick
𝑝𝑐 is enough. If enough, the trader will receive 𝑥 · 𝑝𝑐 amount to-
ken 𝑌 , otherwise, the current price will move left to the tick 𝑝𝑐−1
and continue swapping the remaining with price 𝑝𝑐−1, until 𝑥 is
depleted. In section 4, we will introduce some skills to accelerate
the swapping procedure.

2Not too rigorously, 𝑑√𝑝 = 0 if 𝑑𝑦 is small enough. This is similar to density and
mass in probability theory.

Submitted, November 2021, arXiv version Jimmy Yin and Mac Ren

The input tokens 𝑥 are processed based on whether the liquidity
from liquidity providers or limit orders is consumed.

3.2 Concentrated Liquidity
The first type of liquidity comes from liquidity providers. We first
formally introduce the concept of liquidity, which is used to mea-
sure the trading depth as the price changes. It is an unified indi-
cator to shielding the differences brought by the different size re-
lationship between 𝑝𝑖 and 𝑝𝑐 . Besides, the liquidity is the key to
manage several consecutive price ticks as a whole to improve ef-
ficiency, as we will show in the following. We define the liquidity
in iZiSwap as follows:

Definition 3.1 (liquidity). Given a price tick 𝑝 , the liquidity 𝐿 on
the tick is

𝐿 = 𝑥
√
𝑝 + 𝑦/√𝑝, (4)

where 𝑥 and 𝑦 are the amounts of token 𝑋 and 𝑌 on that price tick
respectively.

Obviously, the liquidity is defined locally. For different price
ticks, the liquidity is separately managed and a liquidity provider
can place all his tokens on a subset of the price ticks, so called con-
centrated liquidity. Liquidity on 𝑝𝑖 are in the form of token 𝑌 for
𝑝𝑖 < 𝑝𝑐 and token 𝑋 for price tick 𝑝𝑖 > 𝑝𝑐 . For 𝑝𝑖 = 𝑝𝑐 , token
𝑋 and 𝑌 may exist simultaneously. The pick of liquidity satisfies
symmetry in a sense and satisfies some desired properties.

(a) The relation between the reserves. (b) The liquidity distribution of price.

Figure 2: Illustration of the iZiSwap dynamics from differ-
ent perspectives.

◦ Concentricity: The required amount of token decreases as the
price tick 𝑝 moves away from the current price 𝑝𝑐 for the same
liquidity. Which means, if a liquidity provider wants to place the
same liquidity on a set of price ticks, more tokens are concen-
trated around 𝑝𝑐 .This is useful when combined with consecutive
price ticks operations, as introduced in section 4, when a liquid-
ity provider selects a relatively large set based on the prediction
of the future price to keep the liquidity active.

◦ Invariability:The liquidity keeps invariant when swapping at the
price tick, whichmeans the value does not depends on the shares
of token 𝑋 and 𝑌 or the current price 𝑝𝑐 , meeting the require-
ment to shield the differences caused by the these values. This
is easily verified by plugging Δ𝑦 = −Δ𝑥 · 𝑝 into (𝑥 + Δ𝑥)√𝑝 +
(𝑦 +Δ𝑦)/√𝑝 . We call the swapping procedure that keeps the liq-
uidity 𝐿 invariant constant sum formula . With discrete price, the
constant sum formula can also be suitable for the AMM model.

Fig. 2.a shows the reserve curve of iZiSwap. Compared with the
constant product formula 𝑥𝑦 = 𝑘 , or Uniswap V3 which is piece-
wise constant product, the curve is piecewise linear, where the
slope is a constant when the swapping occurs on a certain price
tick. The yellow lines in Fig. 2.b show the liquidity distribution in
terms of price, which is similar to the order book if rotating 90
degree counterclockwise. Similar to Uniswap V3, the liquidity dis-
tribution can also be almost arbitrary at the granularity of the price
tick interval delta 𝑑 .

Discussion: comparison with Uniswap V3.
The constant sum formula is the discretization of the dynamics

𝐿𝑑𝑝 = −√𝑝𝑑𝑥, 𝐿𝑑𝑝 = 1/√𝑝𝑑𝑦, (5)

where 𝐿(𝑝), 𝑥 (𝑝) and 𝑦 (𝑝) are functions of reserves with respect
of price 𝑝 .

To verify this, we start from defining a liquidity density 𝐿′(𝑝)
and token density 𝑥 ′(𝑝), 𝑦′(𝑝) over the price space [𝑝𝑎, 𝑝𝑏] with
current price 𝑝𝑐 , which satisfy for all 𝑝𝑖 , 𝑝 𝑗 , 𝑝𝑎 ≤ 𝑝𝑖 ≤ 𝑝𝑐 ≤ 𝑝 𝑗 ≤
𝑝𝑏 : ∫ 𝑝 𝑗

𝑝𝑖
𝐿′(𝑝)𝑑𝑝 =

∫ 𝑝𝑖

𝑝𝑐
𝑦′/√𝑝𝑑𝑝 +

∫ 𝑝𝑐

𝑝 𝑗

𝑥 ′
√
𝑝𝑑𝑝. (6)

Suppose now the current price 𝑝𝑐 moves to 𝑝𝑐 +𝑑𝑝 , where 𝑑𝑝 is
a small value. Before swapping, the amount of token 𝑋 contained
in [𝑝𝑐 , 𝑝𝑐 + 𝑑𝑝] is

∫ 𝑝𝑐+𝑑𝑝
𝑝𝑐

𝑥 ′(𝑝)𝑑𝑝 = 𝑥 ′(𝑝𝑐)𝑑𝑝 . After swapping,
the token 𝑋 changes to token 𝑌 and we have 𝑥 ′(𝑝𝑐)𝑑𝑝 = −𝑑𝑥 . By
definition, we have

𝐿′ |𝑝𝑐𝑑𝑝 =
∫ 𝑝𝑐+𝑑𝑝

𝑝𝑐
𝐿′(𝑝)𝑑𝑝 =

∫ 𝑝𝑐+𝑑𝑝

𝑝𝑐
𝑥 ′(𝑝)√𝑝𝑑𝑝 = 𝑥 ′ |𝑝𝑐

√
𝑝𝑐𝑑𝑝,

which means

𝐿′ |𝑝𝑐𝑑𝑝 = −√𝑝𝑐𝑑𝑥. (7)

Sinct the swapping procedure makes 𝐿 invariant, we have∫ 𝑝𝑐+𝑑𝑝

𝑝𝑐
𝑥 ′(𝑝)√𝑝𝑑𝑝 =

∫ 𝑝𝑐+𝑑𝑝

𝑝𝑐
𝑦′(𝑝)/√𝑝𝑑𝑝, (8)

which implies 𝑑𝑦
𝑑𝑥 |𝑝𝑐 = 𝑝𝑐 . Plugging into Eq. 7, we have 𝐿′ |𝑝𝑐𝑑𝑝 =

1/√𝑝𝑐𝑑𝑦.
The discretization can be obtained by choosing 𝐿′ =

∑
𝛿 (𝑝−𝑝𝑖),

where 𝑝𝑖 are some special points containing liquidity.
Recall that in Uniswap V3, we have

𝐿𝑢𝑑
1
√
𝑝
= 𝑑𝑥, 𝐿𝑢𝑑

√
𝑝 = 𝑑𝑦, (9)

where 𝐿𝑢 is a constant. Essentially, both the constant sum formula
and the Uniswap V3 defines a uniform liquidity density over the
price space, however, with different symmetry, i.e., {𝑑 1√

𝑝
, 𝑑
√
𝑝} in

Uniswap V3 and {√𝑝𝑑𝑝, 1√
𝑝
𝑑𝑝} in constant sum formula. We leave

the further exploration of the differences and connections as future
work.

iZiSwap: Building Decentralized Exchange with Discretized Concentrated Liquidity and Limit Order Submitted, November 2021, arXiv version

3.3 Limit Order
A limit order can be regarded as a one-off liquidity that comes
from a trader instead of a liquidity provider. Based on the size re-
lationship between the current price 𝑝𝑐 and target price 𝑝 , a trader
should place different tokens, corresponding to buy or sell token
𝑋 . When 𝑝 > 𝑝𝑐 , the trader sells token 𝑋 for 𝑌 , and 𝑝 is the ask
price. Otherwise, when 𝑝 < 𝑝𝑐 , the trader buys token 𝑋 with 𝑌 ,
and 𝑝 is the bid price.

The liquidity definition is compatible for the limit order and the
corresponding liquidity can be calculated by Def. 3.1. The liquidity
can be added directly into the liquidity on that tick. Overall, the
liquidity distribution of price is illustrated in Fig.2.b. When swap-
ping, in order to accelerate the swapping procedure, all limit orders
in one price tick 𝑝 are grouped as a whole to avoid looping over
potentially a large amount of small orders. After swapping, if the
liquidity made by limit orders is used, the amount of related input
tokens can be calculated in 𝑂 (1) time and then removed from the
liquidity reserve and cached. The traders need to claim the cached
tokens swapped by the limit order.Then the computational costs are
amortized by the limit order providers.

To ensure fairness and correctness, some requirements must be
satisfied. We list them here and the details for implementation can
be found in the next section.

◦ (General) Chronologically correct: Once the price crosses a point,
the current cached tokens waiting for claim on that point have
nothing to do with the future orders. Specifically, when a trader
places a limit order at time 𝑡 and target price 𝑝 , if the price crosses
𝑝 at 𝑡1 > 𝑡 , he can claim the swapped tokens anytime after 𝑡1 at
price 𝑝 . This prevents the arbitrage behavior that after the price
first crosses through and then crosses back the target, a trader
places a limit order with the old target price and declares that
the previous swapped tokens fill his order.

◦ First claim first get: Once the current price crosses the target
price𝑝 , all the limit orders placed before are fulfilled.The swapped
tokens are locked to the corresponding orders and can be claimed
by the trader at any time after the moment. However, when the
current price reaches the target price tick but not crosses it, not
all the limit orders are fulfilled. In this situation, we follow the
“first come first served” rule. Everyone who places an order be-
fore can view the fulfilled part as if it first fulfilled his order, he
can claim his part if no one beats him to it.

4 IMPLEMENTATION
We list some details for the implementation of the iZiSwap proto-
col under the Ethereum Virtual Environment. The full implemen-
tation can be found in the Github repo 1.The pioneering work Uni-
wap V3 efficiently implements some algorithms and data structure
to support, including but not limited to, tick math and transaction
fee management, we refer readers to [2] for more details.

5 RANGE SET LIQUIDITY
For a liquidity provider, liquidity is managed at the granularity
of the range set in iZiSwap. The liquidity on adjacent ranges can
be managed together to improve efficiency, especially when calcu-
lating the amount of tokens in the swapping procedure. A range

set is composed of a series of adjacent price ticks. It is custom-
ary to use an interval [𝑝𝑎, 𝑝𝑏) that is closed at left and opened at
right to represent a range set with price ticks {𝑝𝑎, 𝑝𝑎+1, ...𝑝𝑏−1} in
it. The range set [𝑝𝑎, 𝑝𝑏) and liquidity, i.e., tokens, on them form
a Liquidity. In iZiSwap, liquidity on each price tick 𝑝 ∈ [𝑝𝑎, 𝑝𝑏)
must be a same value 𝐿 . A Liquidity can then be represented by
𝐿𝑖𝑞(𝑎,𝑏, 𝐿) and created by the mint() API, where 𝑙𝑒 𝑓 𝑡𝑃𝑡 , 𝑟𝑖𝑔ℎ𝑡𝑃𝑡
and 𝑙𝑖𝑞𝑢𝑖𝑑𝐷𝑒𝑙𝑡𝑎 correspond to 𝑎, 𝑏 and 𝐿.

1 function mint(

2 int24 leftPt,

3 int24 rightPt,

4 uint128 liquidDelta

5)

When minting 𝐿𝑖𝑞(𝑎,𝑏, 𝐿), the key step is to calculate the re-
quired amounts 𝑥 and 𝑦 for token 𝑋 and 𝑌 . Suppose the current
price is 𝑝𝑐 , 𝑥 and 𝑦 can be calculated by the relationship between
𝑎,𝑏 and 𝑐 .

◦ 𝑝𝑐 ≥ 𝑝𝑏 : A liquidity provider only needs to provide token 𝑌
with amount:

𝑦 =
𝑏−1∑
𝑖=𝑎

𝐿
√
𝑝𝑖 . (10)

Since 𝑝𝑖 = (1+𝑑)𝑖 ,𝑦 is the sum of a geometric sequence which
can be calculated in 𝑂 (1) with

𝑦 = 𝐿(
√
1 + 𝑑𝑏 −

√
1 + 𝑑𝑎)/(

√
1 + 𝑑 − 1). (11)

◦ 𝑝𝑐 < 𝑝𝑎 : A liquidity provider only needs to provide token 𝑋
with amount:

𝑥 =
𝑏−1∑
𝑖=𝑎

𝐿𝑖/
√
𝑝𝑖

= 𝐿(
√
1 + 𝑑−𝑏 −

√
1 + 𝑑−𝑎)/(

√
1 + 𝑑−1 − 1)

(12)

◦ 𝑝𝑎 ≤ 𝑝𝑐 < 𝑝𝑏 : For the price tick 𝑝𝑐 , both token 𝑋 and token 𝑌
are feasible theoretically. Here we only require token 𝑌 in our
implementation. Hence a liquidity provider needs to provide
token 𝑋 in range set [𝑝𝑎, 𝑝𝑐) while token 𝑌 in [𝑝𝑐 , 𝑝𝑏). The
amount can be calculated by Eq. 11 and Eq. 12 respectively.

We set 𝑑 = 0.0001 in our implementation. Besides, we require
that both 𝑎 and 𝑏 can be divisible by tickSpacing , where the latter
equals to 10 or 30 depending on the property of trading pairs. As in
Uniswap V3, this allows that the current price 𝑝𝑐 efficiently jumps
more than one tick at once in the swapping procedure and prevents
the degenerate condition.

5.1 Remove Liquidity
Suppose a liquidity provider has a Liquidity 𝐿𝑖𝑞(𝑎,𝑏, 𝐿), he can re-
move some liquidity 𝐿′ ≤ 𝐿 with API burn().

1 function burn(

2 int24 leftPt,

3 int24 rightPt,

4 uint128 liquidDelta

5)

Submitted, November 2021, arXiv version Jimmy Yin and Mac Ren

Figure 3: Illustration of some value of PointOrder structure as the current price 𝑝𝑐 pass over the target price. When the grouped
limit orders are partially filled, the earned tokens are stored in earn. Once the orders are all filled, it will stored in legacyEarn.
Note that the current price 𝑝𝑐 > 𝑝 is not necessary.

When removing liquidity, we first need to collect the transaction
fees generated between the last claim and current time. We refer
readers to [2] for details on how to efficiently maintain the related
fees of a Liquidity. Then we need to calculate the amount 𝑥 and
𝑦 corresponding to the liquidity 𝐿′, which follows from the same
formula in themint procedure, i.e., Eq. 11, 12, except one difference.
When the range set [𝑝𝑎, 𝑝𝑏) covers the current price 𝑝𝑐 , since there
may be transactions before, the reserve for token 𝑌 on 𝑝𝑐 may not
sufficient for the amount required. In this case, we first pay token
𝑌 and they pay token 𝑋 for the remaining part.

5.2 Limit Order
Similar to liquidity, a trader can place limit order at the price ticks
that are multiple of tickSpacing. Specifically, a trader can place a
limit order that

◦ buys 𝑋 at any 𝑝𝑘 ∈ (0, 𝑝𝑐] and 𝑘 𝑚𝑜𝑑 𝑡𝑖𝑐𝑘𝑆𝑝𝑎𝑐𝑒 = 0.
◦ sells 𝑋 at any 𝑝𝑘 ∈ [𝑝𝑐 , +∞) and 𝑘 𝑚𝑜𝑑 𝑡𝑖𝑐𝑘𝑆𝑝𝑎𝑐𝑒 = 0.
The limit orderwill not be fulfilledwith the liquidity provided by

LP at once, otherwise a trader could directly swap to avoid paying
more transaction fees.

5.3 Data Structure of Limit Order
There are two data structures related to limit order. For each price
tick, there is a PointOrder structure and for each limit order , there
is a UserEarn structure.

1 struct PointOrder {

2 uint128 sellingX;

3 uint256 accEarnX;

4 uint128 sellingY;

5 uint256 accEarnY;

6 uint128 earnX;

7 uint128 earnY;

8 uint128 legacyEarnX;

9 uint128 legacyEarnY;

10 uint256 legacyAccEarnX;

11 uint256 legacyAccEarnY;

12 }

We call a limit order legacy if, at a time before now and after
the placement of it, all limit orders with same direction (sell 𝑋
or sell 𝑌) and same point, i.e., the grouped one, had been all ful-
filled during one swap transaction. Distinguish the legacy orders
from unlegacy ones are crucial to meet the “Chronologically cor-
rect” property. The key observation is that the “legacy” property is
backward compatible in the time dimension, whichmeans if a limit
order becomes legacy at some time, it will be legacy forever. If we
store the earned token in a separate space, the amount is enough
for supporting all legacy order up to now to claim them.

The value 𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 represents the remaining amount of 𝑋 that
are selling at that tick currently. 𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 represents the accumu-
lated amount of 𝑌 obtained by selling 𝑋 till now. 𝑒𝑎𝑟𝑛𝑌 represents
the unlegacy, i.e., the case that the grouped limit order is not fully
fulfilled, amount of 𝑌 obtained by selling 𝑋 and not be claimed
currently. The claim procedure will be explained in the next sec-
tion. 𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌 represents the legacy amount of 𝑌 obtained by
selling 𝑋 and not be claimed currently. The value 𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌 is
updated by adding value of 𝑒𝑎𝑟𝑛𝑌 when all𝑋 at this point are sold
out after a swap, i.e., when 𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 value becomes 0. And note
that when 𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌 is updated, the value of 𝑒𝑎𝑟𝑛𝑌 will be set
to 0. Fig. 3 illustrate the changing process when the update con-
dition triggers. And the update condition is shown in Proc. 2. The
value 𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑌 is updated by latest 𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 value when
𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌 is updated.

𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑌, 𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑋, 𝑒𝑎𝑟𝑛𝑋, 𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑋, 𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑋 are de-
fined symmetrically for 𝑌 .

1 struct UserEarn {

2 uint256 lastAccEarn;

3 uint256 sellingRemain;

4 uint256 earn;

5 uint256 legacyEarn;

6 }

𝑈𝑠𝑒𝑟𝐸𝑎𝑟𝑛 describes the information of swapped, or earned, to-
kens for a certain limit order. 𝑙𝑎𝑠𝑡𝐴𝑐𝑐𝐸𝑎𝑟𝑛 records the value of
𝑎𝑐𝑐𝐸𝑎𝑟𝑛 in the corresponding PointOrderwhen the trader last time
update the information. Notice that if the limit order sells𝑋 ,𝑎𝑐𝑐𝐸𝑎𝑟𝑛
records 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 . Otherwise, 𝑎𝑐𝑐𝐸𝑎𝑟𝑛 records
𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑋 . 𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑅𝑒𝑚𝑎𝑖𝑛 represents how many token

iZiSwap: Building Decentralized Exchange with Discretized Concentrated Liquidity and Limit Order Submitted, November 2021, arXiv version

𝑋 or𝑌 are not sold out in the order till now. 𝐸𝑎𝑟𝑛 and𝑢𝑛𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛
represent after several times of transactions and updating opera-
tion, how many 𝑢𝑛𝑙𝑒𝑔𝑎𝑐𝑦 or 𝑙𝑒𝑔𝑎𝑐𝑦 token 𝑋 or 𝑌 that the trader
has claimed but not withdraw, see explanation below.

5.4 Claim Swapped Tokens
The claim actionmeans a trader confirms the swapped tokens. Note
that the claimed tokens still lie in the contract, recorded by 𝑒𝑎𝑟𝑛
and𝑢𝑛𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛 above, and can then be withdrawn by the trader
with an extrawithdraw action. Suppose a trader places a limit order
at 𝑝 that sells 𝑋 for 𝑌 . At any time, usually after several transac-
tions at tick 𝑝 , the trade can update the information in 𝑈𝑠𝑒𝑟𝐸𝑎𝑟𝑛
for the limit order with API decLimOrderWithX() or decLimOrder-
WithY() by setting 𝑑𝑒𝑙𝑡𝑎 = 0. The update procedure finishes the
claim action and the pseudo code is shown in Alg. 1. The pseudo
code for claiming the limit order that sells 𝑌 for 𝑋 is symmetrical.

1 function decLimOrderWithX(

2 int24 pt,

3 uint128 deltaX

4)

Algorithm 1 Update UserEarn
1: Let 𝑢𝑒 denotes𝑈𝑠𝑒𝑟𝐸𝑎𝑟𝑛 for the order;
2: Let 𝑝𝑜 denotes 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 for the order;
3: if 𝑝𝑜.𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑌 > 𝑢𝑒.𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 then
4: Let 𝑒 = 𝑢𝑒.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑅𝑒𝑚𝑎𝑖𝑛 · (1 + 𝑑)𝑝 ;
5: 𝑢𝑒.𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛 += 𝑒
6: 𝑢𝑒.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑅𝑒𝑚𝑎𝑖𝑛 = 0
7: 𝑝𝑜.𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌 −= 𝑒
8: 𝑢𝑒.𝑙𝑎𝑠𝑡𝐴𝑐𝑐𝐸𝑎𝑟𝑛 = 𝑝𝑜.𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌
9: else
10: Let 𝑒1 = 𝑝𝑜.𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 − 𝑢𝑒.𝑙𝑎𝑠𝑡𝐴𝑐𝑐𝐸𝑎𝑟𝑛;
11: Let 𝑒2 = 𝑢𝑒.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑅𝑒𝑚𝑎𝑖𝑛 · (1 + 𝑑)𝑝 ;
12: Let 𝑒𝑎𝑟𝑛 =𝑚𝑖𝑛{𝑒1, 𝑒2, 𝑝𝑜.𝑒𝑎𝑟𝑛𝑌 };
13: 𝑢𝑒.𝑒𝑎𝑟𝑛 += 𝑒𝑎𝑟𝑛;
14: 𝑢𝑒.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑅𝑒𝑚𝑎𝑖𝑛 −= 𝑒𝑎𝑟𝑛/(1 + 𝑑)𝑝 ;
15: 𝑢𝑒.𝑙𝑎𝑠𝑡𝐴𝑐𝑐𝐸𝑎𝑟𝑛 = 𝑝𝑜.𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 ;
16: 𝑝𝑜.𝑒𝑎𝑟𝑛𝑌 −= 𝑒𝑎𝑟𝑛
17: end if

The 𝑒𝑎𝑟𝑛 and 𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛 will not auto-update unless the trader
actively updates it, and the update procedure for 𝑒𝑎𝑟𝑛 satisfies the
“First claim first get” rule in the partial fulfilled case. The values
𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .𝑒𝑎𝑟𝑛𝑌 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌
and 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑌 will be updatedwhen a swap hap-
pens. It is worth noting that, for unlegacy part of unclaimed earn-
ings, i.e., maintained in 𝑒𝑎𝑟𝑛, the above pseudo code can not guar-
antee “Chronologically correct” property, which requires that limit
orders placed later can not claim the swapped tokens fulfilled be-
fore by the others. However, once all the limit orders on the point
are fulfilled, we will mark all fulfilled limit orders as legacy in𝑂 (1)
time via simply update 𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑋 or 𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑌 value
as latest 𝑎𝑐𝑐𝐸𝑎𝑟𝑛 value on the corresponding point, and move all
earnings by those limit orders to legacy part, as shown in Proc. 2.
Since then, any limit order placed after that swap could not claim
any earnings from limit orders placed before that swap.

5.5 Swap Procedure
In this section we show the procedure when a trader tries to swap
tokens. We focus on the calculation about the amount of swapped
tokens in the swapping procedure. We take the case that a trader
tries to swap 𝑦 for 𝑥 for example and the other case can be ob-
tained symmetrically. We first list different cases during the swap-
ping process and then show the overall algorithm. The related API
is 𝑠𝑤𝑎𝑝𝑌2𝑋 (), where ℎ𝑖𝑔ℎ𝑃𝑡 is the highest acceptable price of 𝑋
and 𝑑𝑎𝑡𝑎 is related to the token transfer procedure. Fig. 4 roughly
shows the general procedure.

Figure 4: Illustration of the overall swap procedure. In an
inner loop, it first fills the limit order and the liquidity on
current point, and then jumps within an interval.

1 function swapY2X(

2 address recipient,

3 uint128 amount,

4 int24 highPt,

5 bytes calldata data

6)

5.6 Case 1: Swap on an Limit Order
When a trader swaps using the liquidity of a limit order on tick
𝑝 , the swapped token will follow from the price 𝑝 . The contract
will update the information in the corresponding 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 , i.e.
𝑒𝑎𝑟𝑛𝑌 , 𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 and 𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 . The value 𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 will constrain
the amount of token 𝑋 can be obtained in the next time. 𝑒𝑎𝑟𝑛𝑌
and 𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 will be used in the claiming action, as shown before.
Proc. 2 shows the pseudo code for this case.

5.7 Case 2: Swap on a tick with liquidity
Suppose the trader swaps on tick 𝑝𝑎 .The swapping procedure keeps
the liquidity at least invariant and the swapped tokens also follows

Submitted, November 2021, arXiv version Jimmy Yin and Mac Ren

Procedure 2 Swap On an Limit Order
1: procedure SwapOnLimORdeR()
2: // 𝑝 is the target price of the limit order.
3: // 𝑝𝑜 is the related 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 .
4: // 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦 are references to record the

amount of swapped and input token. These input parame-
ters are similar in the other procedures

5: input: 𝑝 , 𝑝𝑜 , 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌 , 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋 , 𝑦;
6: 𝑐𝑜𝑠𝑡𝑌𝐿𝑖𝑚 =𝑚𝑖𝑛{𝑦, 𝑝𝑜.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 ∗ 𝑝};
7: 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋𝐿𝑖𝑚 =𝑚𝑖𝑛{𝑝𝑜.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋,𝑦/𝑝};
8: 𝑦 −= 𝑐𝑜𝑠𝑡𝑌𝐿𝑖𝑚 ;
9: 𝑝𝑜.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 −= 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋𝐿𝑖𝑚 ;
10: 𝑝𝑜.𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌 += 𝑐𝑜𝑠𝑡𝑌𝐿𝑖𝑚 ;
11: 𝑝𝑜.𝑒𝑎𝑟𝑛𝑌 += 𝑐𝑜𝑠𝑡𝑌𝐿𝑖𝑚 ;
12: 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌 += 𝑐𝑜𝑠𝑡𝑌𝐿𝑖𝑚 ;
13: 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋 += 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋𝐿𝑖𝑚 ;
14: if 𝑝𝑜.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 = 0 then
15: 𝑝𝑜.𝑙𝑒𝑔𝑎𝑐𝑦𝐴𝑐𝑐𝐸𝑎𝑟𝑛𝑌 = 𝑝𝑜.𝑎𝑐𝑐𝐸𝑎𝑟𝑛𝑌
16: 𝑝𝑜.𝑙𝑒𝑔𝑎𝑐𝑦𝐸𝑎𝑟𝑛𝑌 += 𝑝𝑜.𝑒𝑎𝑟𝑛𝑌
17: 𝑝𝑜.𝑒𝑎𝑟𝑛𝑌 = 0
18: end if
19: end procedure

from the price 𝑝𝑎 . After swapping, 𝑥 and𝑦 should be non-negative.
Proc. 4 shows the procedure.

Procedure 3 Swap On a Tick With Liquidity
procedure SwapTicKL()

// 𝑎 is the index of the price tick.
3: // 𝐿𝑎 is the liquidity at 𝑝𝑎 .

input: 𝑎, 𝐿𝑎, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦;
output: 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦;

6: Let 𝑐𝑢𝑟𝑟𝑋𝑎 denotes the amount of token 𝑋 in tick 𝑝𝑎 ;
Let 𝑐𝑢𝑟𝑟𝑌𝑎 denotes the amount of token 𝑌 in tick 𝑝𝑎 ;
Let 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋 =𝑚𝑖𝑛{𝑦/𝑝𝑎, 𝑐𝑢𝑟𝑟𝑋𝑎};

9: Let 𝑐𝑜𝑠𝑡𝑌 = 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋 ∗ 𝑝𝑎 ;
Let 𝑦 −= 𝑐𝑜𝑠𝑡𝑌 ;
Let 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌 −= 𝑐𝑜𝑠𝑡𝑌 ;

12: Let 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋 += 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋 ;
end procedure

5.8 Case 3: Swap Across a Range Set with Same
Liquidity

In this case, liquidity at each tick 𝑝𝑖𝑛[𝑝𝑎, 𝑝𝑏) is the same 𝐿 and 𝑝𝑎
is the current price. Obviously, liquidity on [𝑝𝑎+1, 𝑝𝑏) are all in the
form of token𝑋 . There are two cases about the liquidity on tick 𝑝𝑎 .

If all liquidity at 𝑝𝑎 are 𝑋 , then so is [𝑝𝑎, 𝑝𝑏). In this case, the
trader pushes the price from 𝑝𝑎 to 𝑝𝑏 and the consumed amount 𝑦
and swapped amount 𝑥 can be calculated by 11 and 12.

If there are some token 𝑌 at 𝑝𝑎 , this happens because of the
transactions happen before. In this case, the trader will first con-
sume all the 𝑥 as in𝐶𝑎𝑠𝑒2 and the remaining liquidity in [𝑝𝑎+1, 𝑝𝑏)
reduces to the above case. The pseudo code is shown in Proc. 4.

Procedure 4 Swap Across a Range Set with Same Liquidity
procedure SwapRangeL()

input: 𝑎,𝑏, 𝐿𝑎, 𝑑, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦;
3: output: 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦;

let 𝑐𝑜𝑠𝑡𝑌 = 𝐿𝑎 (
√
1 + 𝑑𝑏 −

√
1 + 𝑑𝑎)/(

√
1 + 𝑑 − 1);

let 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋 = 𝐿𝑎 (
√
1 + 𝑑−𝑏 −

√
1 + 𝑑−𝑎)/(

√
1 + 𝑑−1 − 1);

6: let 𝑦 −= 𝑐𝑜𝑠𝑡𝑌 ;
let 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌 −= 𝑐𝑜𝑠𝑡𝑌 ;
let 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋 += 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑋 ;

9: end procedure

5.9 Case 4: Stop in a Range Set
Different from Case 3, the trader can only buy a part of token 𝑋 in
[𝑝𝑎, 𝑝𝑏). In this case, we should first calculate how many ticks the
trader can cover. Specifically, we need to find the largest 𝑡 that all
the liquidity in [𝑝𝑎, 𝑝𝑡), are swapped out. For simplicity, suppose
that there are only token 𝑋 in tick 𝑝𝑎 . We have:

Procedure 5 Swap in [𝑝𝑎, 𝑝𝑏) And Check Whether Finished
procedure SwapInRange()

input: 𝑎,𝑏, 𝐿𝑎, 𝑑, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦;
3: output: 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦, 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 ;

𝑆𝑤𝑎𝑝𝑇𝑖𝑐𝑘𝐿(𝑎, 𝐿𝑎, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦);
if 𝑦 == 0 then

6: finished = true;
RETURN;

end if
9: Let 𝑌𝑏

𝑎+1 = 𝐿𝑎 (
√
1 + 𝑑𝑏 −

√
1 + 𝑑𝑎)/(

√
1 + 𝑑 − 1);

if 𝑦 >= 𝑌𝑏
𝑎+1 then

𝑆𝑤𝑎𝑝𝑅𝑎𝑛𝑔𝑒𝐿(𝑎 + 1, 𝑏, 𝐿𝑎, 𝑑, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦);
12: Let 𝑎 = 𝑏;

if 𝑦 == 0 then
finished = true;

15: RETURN;
end if

else
18: Let 𝑡 = ⌊𝑙𝑜𝑔√

1+𝑑 [
𝑦
𝐿𝑎

(
√
1 + 𝑑 − 1) +

√
1 + 𝑑𝑎]⌋;

𝑆𝑤𝑎𝑝𝑅𝑎𝑛𝑔𝑒𝐿(𝑎 + 1, 𝑡, 𝐿𝑎, 𝑑, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦);
Let 𝑎 = 𝑡 ;

21: if 𝑦 == 0 then
finished = true;
RETURN;

24: end if
𝑆𝑤𝑎𝑝𝑇𝑖𝑐𝑘𝐿(𝑡, 𝐿𝑎, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦);
finished = true;

27: RETURN;
end if
finished = false;

30: end procedure

𝑦 >= 𝐿(
√
1 + 𝑑𝑡 −

√
1 + 𝑑𝑎)/(

√
1 + 𝑑 − 1), (13)

where 𝑦 is the amount the trader pays, solving the inequality
we have:

iZiSwap: Building Decentralized Exchange with Discretized Concentrated Liquidity and Limit Order Submitted, November 2021, arXiv version

𝑡 = ⌊𝑙𝑜𝑔√
1+𝑑 [

𝑦

𝐿
(
√
1 + 𝑑 − 1) +

√
1 + 𝑑𝑎]⌋ (14)

After calculating 𝑡 , the trader first buy all token 𝑋 in [𝑝𝑎, 𝑝𝑡).
For the remaining 𝑌 , since 𝑡 is the largest value satisfying 13, liq-
uidity at tick 𝑝𝑡 is enough to consume all the remaining 𝑌 , which
follows the Case 2. Obviously, when this case happens, the whole
swapping procedure has finished. The pseudo code for the proce-
dure was shown in Proc. 5.

5.10 Overall Swap Procedure
The limit order and Liquidity divide the how price space [𝑝𝑐 ,∞)
into small range sets with different amount of liquidity on them.
The whole swapping procedure will loop over the range sets with
the above procedures and the overall pseudo code is shown in ALg.
6.

Algorithm 6 Swap from token 𝑌 to 𝑋
// 𝑦 and 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡 corresponds to 𝑎𝑚𝑜𝑢𝑛𝑡 and ℎ𝑖𝑔ℎ𝑃𝑡
input: 𝑦, 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡 ;
Let 𝑝𝑎 be the current price tick of 𝑋 .
Let 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋 = 0;
Let 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌 = 0;

6: while 𝑦 > 0 or 𝑎 < 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡 do
Let 𝑝𝑜 be the 𝑃𝑜𝑖𝑛𝑡𝑂𝑟𝑑𝑒𝑟 of 𝑝𝑎 .
if 𝑝𝑜.𝑠𝑒𝑙𝑙𝑖𝑛𝑔𝑋 > 0 then

SwapOnLimOrder(a, po, totCostY, totAcquireX, y);
end if
if 𝑦 == 0 then

12: break;
end if
Let 𝑝𝑏 be the right nearest tick of a limit order or a boundary
of a range set.
Let 𝑏 =𝑚𝑖𝑛{𝑏, 𝐻𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑜𝑖𝑛𝑡};
// Now the liquidity in [𝑝𝑎, 𝑝𝑏) must be the same.
Let 𝐿𝑎 denotes liquidity of tick a;

18: Let 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 =
𝑆𝑤𝑎𝑝𝐼𝑛𝑅𝑎𝑛𝑔𝑒 (𝑎, 𝐿𝑎, 𝑑, 𝑡𝑜𝑡𝐶𝑜𝑠𝑡𝑌, 𝑡𝑜𝑡𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋,𝑦);

if 𝑓 𝑖𝑛𝑖𝑠ℎ𝑒𝑑 == 𝑡𝑟𝑢𝑒 then
break;

end if
end while;

24: Update the current price for 𝑋 with 𝑝𝑎 .
Transfer tokens according to 𝑡𝑜𝐶𝑜𝑠𝑡𝑌 and 𝑡𝑜𝐴𝑐𝑞𝑢𝑖𝑟𝑒𝑋 .

6 CONCLUSION
In this paper, we propose a novel Decentralized Exchange protocol
iZiSwap. The protocol unifies the recyclable liquidity provided by
the liquidity providers and the one-off liquidity provided by the
traders’ limit orders, making the trading depth deeper than any
one alone. From the trader’s perspective, a trader can enjoy both
the minimal price slippage due to the depth and the flexibility of
limit order to seize desired transaction opportunities.The proposed
protocol is efficient enough to run in the network situation similar
to Ethereum and a full implementation under the EthereumVirtual
Machine environment is provided.

REFERENCES
[1] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 core.

URl: https://uniswap.org/whitepaper. pdf (2020).
[2] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robin-

son. 2021. Uniswap v3 Core. (2021).
[3] Michael Egorov. 2019. StableSwap - efficient mechanism for Stablecoin liquidity.

(2019). https://curve.fi/files/stableswap-paper.pdf

https://curve.fi/files/stableswap-paper.pdf

	Abstract
	1 Introduction
	1.1 Outline

	2 Background and Motivations
	2.1 Concentrated Liquidity in Uniswap V3
	2.2 Motivations

	3 iZiSwap Protocol Design
	3.1 From Continuous to Discrete
	3.2 Concentrated Liquidity
	3.3 Limit Order

	4 Implementation
	5 Range Set Liquidity
	5.1 Remove Liquidity
	5.2 Limit Order
	5.3 Data Structure of Limit Order
	5.4 Claim Swapped Tokens
	5.5 Swap Procedure
	5.6 Case 1: Swap on an Limit Order
	5.7 Case 2: Swap on a tick with liquidity
	5.8 Case 3: Swap Across a Range Set with Same Liquidity
	5.9 Case 4: Stop in a Range Set
	5.10 Overall Swap Procedure

	6 Conclusion
	References

